Search results for "HeLa cells"

showing 10 items of 280 documents

Selection for Robustness in Mutagenized RNA Viruses

2007

Mutational robustness is defined as the constancy of a phenotype in the face of deleterious mutations. Whether robustness can be directly favored by natural selection remains controversial. Theory and in silico experiments predict that, at high mutation rates, slow-replicating genotypes can potentially outcompete faster counterparts if they benefit from a higher robustness. Here, we experimentally validate this hypothesis, dubbed the ‘‘survival of the flattest,’’ using two populations of the vesicular stomatitis RNA virus. Characterization of fitness distributions and genetic variability indicated that one population showed a higher replication rate, whereas the other was more robust to mut…

0106 biological sciencesCancer ResearchMutation ratelcsh:QH426-470In silicoMolecular Sequence DataPopulationBiologyVirus Replication010603 evolutionary biology01 natural sciencesVesicular stomatitis Indiana virusCell Line03 medical and health sciences0302 clinical medicineVirologyCricetinaeGeneticsAnimalsHumansSelection GeneticeducationMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and Systematics030304 developmental biologyGeneticsEvolutionary Biology0303 health scienceseducation.field_of_studyNatural selectionRobustness (evolution)Genetics and GenomicsRNA virusbiology.organism_classification3. Good healthlcsh:GeneticsViral replicationMutagenesisViral evolutionViruses030217 neurology & neurosurgeryResearch ArticleHeLa Cells
researchProduct

Phosphorylation of CENP-A on serine 7 does not control centromere function.

2019

CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viab…

0301 basic medicine1.1 Normal biological development and functioningScience[SDV]Life Sciences [q-bio]CentromereGeneral Physics and Astronomy02 engineering and technology[SDV.BC]Life Sciences [q-bio]/Cellular Biologymacromolecular substancesBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleSerineChromosome segregation03 medical and health sciencesHistone H3Underpinning researchCentromereGeneticsHumansViability assayPhosphorylationlcsh:ScienceComputingMilieux_MISCELLANEOUSCancerGene EditingMultidisciplinaryQGene targetingGeneral Chemistry021001 nanoscience & nanotechnologyCell biologySettore BIO/18 - Genetica030104 developmental biologyChromosome segragationHela CellsPhosphorylationEpigeneticslcsh:QGeneric health relevance0210 nano-technologyFunction (biology)Centromere Protein AHumanHeLa CellsNature communications
researchProduct

Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening

2018

Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of …

0301 basic medicineAgingTelomeraseTelomere-Binding ProteinsClinical BiochemistryCell Cycle ProteinsBiologymedicine.disease_causeBiochemistryDyskeratosis CongenitaDyskerin03 medical and health sciencesTelomere HomeostasisRibonucleoproteins Small NucleolarmedicineHumanslcsh:QH301-705.5TelomeraseCellular SenescenceTelomere ShorteningRibonucleoproteinlcsh:R5-920TelomeropathiesOrganic ChemistryNuclear ProteinsShelterinmedicine.diseaseMolecular biologyTelomereCell biologyOxidative Stress030104 developmental biologylcsh:Biology (General)DNA damageRNA InterferenceAntioxidantlcsh:Medicine (General)Oxidative stressDyskeratosis congenitaResearch PaperHeLa CellsRedox Biology
researchProduct

Comprehensive translational control of tyrosine kinase expression by upstream open reading frames

2016

Post-transcriptional control has emerged as a major regulatory event in gene expression and often occurs at the level of translation initiation. Although overexpression or constitutive activation of tyrosine kinases (TKs) through gene amplification, translocation or mutation are well-characterized oncogenic events, current knowledge about translational mechanisms of TK activation is scarce. Here, we report the presence of translational cis-regulatory upstream open reading frames (uORFs) in the majority of transcript leader sequences of human TK mRNAs. Genetic ablation of uORF initiation codons in TK transcripts resulted in enhanced translation of the associated downstream main protein-codin…

0301 basic medicineCancer ResearchFive prime untranslated regionKozak consensus sequenceShort CommunicationBiologymedicine.disease_causeProto-Oncogene MasGene Expression Regulation Enzymologic03 medical and health sciencesOpen Reading FramesEukaryotic translationUpstream open reading frameGeneticsmedicineHumansGene Regulatory NetworksMolecular BiologyGeneticsMutationGene Expression ProfilingTranslation (biology)Protein-Tyrosine KinasesOpen reading frame030104 developmental biologyHEK293 CellsProtein BiosynthesisHuman genomeHeLa Cells
researchProduct

Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs)

2017

This paper describes the development of a class of peptide-based inhibitors as novel antitrypanosomal and antimalarial agents. The inhibitors are based on a characteristic peptide sequence for the inhibition of the cysteine proteases rhodesain of Trypanosoma brucei rhodesiense and falcipain-2 of Plasmodium falciparum. We exploited the reactivity of novel unsaturated electrophilic functions such as vinyl-sulfones, -ketones, -esters, and -nitriles. The Michael acceptors inhibited both rhodesain and falcipain-2, at nanomolar and micromolar levels, respectively. In particular, the vinyl ketone 3b has emerged as a potent rhodesain inhibitor (k2nd = 67 × 106 M-1 min-1), endowed with a picomolar b…

0301 basic medicineCathepsin LAntimalarialPeptideHeLa Cell01 natural sciencesCysteine Proteinase InhibitorDipeptideDrug DiscoveryPeptide sequencechemistry.chemical_classificationTrypanocidal AgentbiologyNeglected DiseasesStereoisomerismDipeptidesTrypanocidal AgentsMAJOR CYSTEINE PROTEASE PLASMODIUM-FALCIPARUM TRYPANOSOMA-BRUCEI CONFORMATIONAL-ANALYSIS BIOLOGICAL EVALUATION HIGHLY POTENT VINYL-ESTER INHIBITORS PEPTIDOMIMETICS SUBSTRATEMolecular Docking SimulationCysteine EndopeptidasesBiochemistryMolecular MedicineHumanProteasesNeglected DiseaseStereochemistryPhenylalaninePlasmodium falciparumTrypanosoma brucei bruceiCysteine Proteinase InhibitorsMolecular Dynamics SimulationTrypanosoma bruceiAntimalarialsStructure-Activity Relationship03 medical and health sciencesparasitic diseasesHumansStructure–activity relationship010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceHydrogen BondingTrypanosoma brucei rhodesiensePlasmodium falciparumbiology.organism_classificationMalaria0104 chemical sciencesTrypanosomiasis African030104 developmental biologychemistryCarbamateCarbamatesCysteine EndopeptidaseHeLa CellsCysteineJournal of Medicinal Chemistry
researchProduct

Design, synthesis, and biological evaluation of a new class of benzo[b]furan derivatives as antiproliferative agents, with in silico predicted antitu…

2018

A new series of 3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furans were synthesized and screened as antitumor agents. As a general trend, tested compounds showed concentration-dependent antiproliferative activity against HeLa and MCF-7 cancer cell lines, exhibiting GI50 values in the low micromolar range. In most cases, insertion of a methyl substituent on the imidazole moiety improved the antiproliferative activity. Therefore, methyl-imidazolyl-benzo[b]furans compounds were tested in cell cycle perturbation experiments, producing cell cycle arrest with proapoptotic effects. Their core similarity to known colchicine binding site binders led us to further study the structure featur…

0301 basic medicineCell cycle checkpointinduced fit docking studieantitubulin agents01 natural sciencesBiochemistryHeLa and MCF-7 cell linesHeLachemistry.chemical_compoundTubulinFuranDrug DiscoveryImidazoleMoietybiologyHeLa and MCF-7 cell lineG2/M phaseTubulin ModulatorsMolecular Docking SimulationAntiproliferative AgentsMCF-7 CellsMolecular MedicineVLAK protocolantitubulin agentStereochemistryIn silicoSubstituent3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furansAntineoplastic Agentsinduced fit docking studiesantitumor agents03 medical and health sciencesHumanscolchicine binding siteBenzofuransCell ProliferationPharmacologyBinding Sites010405 organic chemistryOrganic ChemistryCell Cycle Checkpoints3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furanbiology.organism_classification0104 chemical sciencesProtein Structure Tertiary030104 developmental biologychemistryantitumor agentDrug DesignColchicineHeLa Cells
researchProduct

The Stalk Domain of NKp30 Contributes to Ligand Binding and Signaling of a Preassembled NKp30-CD3ζ Complex

2016

The natural cytotoxicity receptor (NCR) NKp30 (CD337) is a key player for NK cell immunosurveillance of infections and cancer. The molecular details of ligand recognition and its connection to CD3ζ signaling remain unsolved. Here, we show that the stalk domain (129KEHPQLGAGTVLLLR143) of NKp30 is very sensitive to sequence alterations, as mutations lead to impaired ligand binding and/or signaling capacity. Surprisingly, the stalk domains of NKp30 and NKp46, another NCR employing CD3ζ for signaling, were not exchangeable without drastic deficiencies in folding, plasma membrane targeting, and/or ligand-induced receptor signaling. Further mutational studies, N-glycosylation mapping, and plasma …

0301 basic medicineCell signalingCD3 ComplexImmunologyProtein domainBiologyCD3 ComplexBiochemistryCell membraneMice03 medical and health sciencesProtein DomainsCell surface receptormedicineAnimalsHumansMolecular BiologyNatural Cytotoxicity Triggering Receptor 3Natural Cytotoxicity Triggering Receptor 1Cell MembraneCell BiologyLigand (biochemistry)Cell biology030104 developmental biologymedicine.anatomical_structureMembrane proteinBiochemistrySignal transductionHeLa CellsSignal TransductionJournal of Biological Chemistry
researchProduct

Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterrane…

2016

In this paper the diversity of fruit quality within nine loquat cultivars, including five international affirmed cultivars (Algerie, Golden Nugget, Peluche, Bueno, El Buenet) and four local cultivars (Sanfilippara, Nespolone di Trabia, BRT20 and Claudia), were investigated in order to discriminate the variation in pomological characteristics, sensory profile, and antioxidant properties. Finally, to evaluate potential bioactivity, antiproliferative activity of hydrophilic extracts from loquat fruits was assessed, at dietary relevant concentrations, against three human epithelial cell lines. Even though the international cultivars confirmed an appropriate level of commercial qualities in asso…

0301 basic medicineChemical PhenomenaSensory profileEriobotryaAscorbic AcidAntiproliferative activityPhytochemicalJaponicaAntioxidants03 medical and health sciences0404 agricultural biotechnologyNutraceuticalPhenolsAntioxidant activitySettore BIO/10 - BiochimicaBotanyFood QualityHumansCultivarCarotenoidCell Proliferationchemistry.chemical_classificationCarotenoidFruit quality030109 nutrition & dieteticsbiologyMediterranean RegionPlant Extractsfood and beveragesPlant physiologyPolyphenols04 agricultural and veterinary sciencesSettore AGR/15 - Scienze E Tecnologie Alimentaribiology.organism_classification040401 food scienceCarotenoidsSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticultureEriobotryachemistryChemistry (miscellaneous)PolyphenolFruitTasteDietary SupplementsMCF-7 CellsCaco-2 CellsFood ScienceHeLa Cells
researchProduct

Apoptotic effect of a phytosterol-ingredient and its main phytosterol (β-sitosterol) in human cancer cell lines

2018

Dietary interventions may effectively control cancer development, with phytosterols (PS) being a class of cancer chemopreventive dietary phytochemicals. The present study, for the first time, evaluates the antiproliferative effects of a PS-ingredient used for the enrichment of several foods and its main PS, β-sitosterol, at physiological serum levels, in the most prevalent cancer cells in women (breast (MCF-7), colon (HCT116) and cervical (HeLa)). In all three cell lines, these compounds induced significant cell viability reduction without a clear time- and dose-dependent response. Moreover, all treatments produced apoptotic cell death with the induction of DNA fragmentation through the app…

0301 basic medicineColorectal cancercervical cancerCellPopulationApoptosis030209 endocrinology & metabolismHeLa03 medical and health sciences0302 clinical medicineBreast cancerbreast cancermedicineHumanseducationCell Proliferationeducation.field_of_study030109 nutrition & dieteticsbiologybusiness.industryPhytosterolsCancerplant sterolAntiproliferationHCT116 Cellsmedicine.diseasebiology.organism_classificationSitosterolsapoptosimedicine.anatomical_structurecolon cancerApoptosisCancer cellMCF-7 CellsCancer researchbusinessHeLa CellsFood Science
researchProduct

Mitochondrial BAX Determines the Predisposition to Apoptosis in Human AML

2017

Abstract Purpose: Cell-to-cell variability in apoptosis signaling contributes to heterogenic responses to cytotoxic stress in clinically heterogeneous neoplasia, such as acute myeloid leukemia (AML). The BCL-2 proteins BAX and BAK can commit mammalian cells to apoptosis and are inhibited by retrotranslocation from the mitochondria into the cytosol. The subcellular localization of BAX and BAK could determine the cellular predisposition to apoptotic death. Experimental Design: The relative localization of BAX and BAK was determined by fractionation of AML cell lines and patient samples of a test cohort and a validation cohort. Results: This study shows that relative BAX localization determine…

0301 basic medicineCytoplasmCancer ResearchApoptosisKaplan-Meier EstimateBiologyMitochondrionMitochondrial Proteins03 medical and health sciencesCell Line Tumorhemic and lymphatic diseasesmedicineHumansCytotoxic T cellLeukocytosisRetrospective Studiesbcl-2-Associated X ProteinMyeloid leukemiaCancerRetrospective cohort studymedicine.diseaseMitochondriaProtein TransportLeukemiabcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyOncologyLeukemia MyeloidApoptosisAcute DiseaseImmunologyCancer researchmedicine.symptomHeLa CellsClinical Cancer Research
researchProduct